Investigate a Laplace Equation on a Torus
Find the five smallest eigenvalues and eigenfunctions of a Laplace equation on a square torus with a Dirichlet constraint.
Specify periodic boundary conditions on a square of length 1.
In[1]:=
torusBCs = {u[0, y] == u[1, y], u[x, 0] == u[x, 1]};
Specify a value at the origin. By the periodic conditions, this must also be the value at the other three corners of the square.
In[2]:=
constraint = DirichletCondition[u[x, y] == 0, x == 0 && y == 0];
Compute the eigenvalues and eigenfunctions.
In[3]:=
{vals, funs} =
NDEigensystem[
Join[{-Laplacian[u[x, y], {x, y}], constraint}, torusBCs],
u[x, y], {x, y} \[Element] Rectangle[{0, 0}, {1, 1}], 4];
Inspect the eigenvalues.
In[4]:=
vals
Out[4]=
Visualize the eigenfunctions.
show complete Wolfram Language input
Out[5]=