Wolfram Language

Erweiterungen zu Wahrscheinlichkeit & Statistik

Modellieren sozialer Netzwerke

Die verschobene Gompertz-Verteilung ist die Verteilung des Extremwerts unabhängiger exponentieller und extremwertig verteilter Zufallsvariablen. Die Verteilung eignet sich, um die Zu- und Abnahme von Interesse in sozialen Netzwerken zu berechnen. Die CDF (kumulative Verteilungsfunktion) der verschobenen Gompertz-Verteilung nimmt folgende Form an:

In[1]:=
Click for copyable input
CDF[ShiftedGompertzDistribution[\[Lambda], \[Xi]], x]
Out[1]=

Wöchentliche Zählung des Interesses auf Facebook von Google Trends.

In[2]:=
Click for copyable input
ts = TemporalData[TimeSeries, {CompressedData[" 1:eJyFz2tPwjAUBmDA+7wRNCpeQBTRiAGvXLoNYYytPW03QHSybiYav/tX/Ume GRO/mPg0p+l72pykpbeP8VsmlUqlsT5xS/8n82smM/Nt9sdcYv4vC2gxoWlL mqYto5WVVbS2tp7N5nK5jY3N7Z2tnXx+d3dvbx/XQbFwUCgUi4eHpdLRcbl8 UjmtnJ1XqxeoVqvV65dX9cvrZvP2pnHXaLUbjWaLIJMYuk4MwzTNTue+1+1a qO9a9qA/cPq2PRg4ILnLgHPGgLkuABfSdRyHUs5AAghvyD3peb4U+IhLJoCB NxLUk0JwgXcCRNIT2AYpPS4YByo5cGBsFL+oOFaRCqP4/VWpOFQqCKbhVEXh 9BmFKopjTFEQBs9PweRxNHkYj/yh7/ueEHI8xDGAg7AAqMsodRw3OTP2HWxK XfyFbVl2z+p2kGn1jATRSZsQXW+RNkpSmxjkC/7xXxc= "], { TemporalData`DateSpecification[{2006, 8, 26, 0, 0, 0.}, { 2015, 7, 11, 0, 0, 0.}, {1, "Week"}]}, 1, {"Continuous", 1}, { "Discrete", 1}, 1, { ValueDimensions -> 1, DateFunction -> Automatic, ResamplingMethod -> {"Interpolation", InterpolationOrder -> 1}}}, True, 314.1];
Den kompletten Wolfram Language-Input zeigen
In[3]:=
Click for copyable input
DateListPlot[ts, ImageSize -> Medium, PlotTheme -> "Detailed", Filling -> Axis]
Out[3]=

Die Daten werden einer verschobenen gestutzten Gompertz-Verteilung angepasst.

In[4]:=
Click for copyable input
rawcounts = ts["Values"]; length = Length[rawcounts]; x = Range[length] - 0.5; wdata = WeightedData[x, rawcounts];
In[5]:=
Click for copyable input
edist = EstimatedDistribution[wdata, TruncatedDistribution[{0, length}, ShiftedGompertzDistribution[\[Lambda], \[Xi]]], {{\[Lambda], 1}, {\[Xi], 6}}]
Out[5]=

Vergleichen Sie die Prognosen des Modells mit den Daten.

Den kompletten Wolfram Language-Input zeigen
In[6]:=
Click for copyable input
counts = Total[rawcounts] PDF[edist , x]; DateListPlot[{rawcounts, counts}, {ts["FirstDate"], Automatic, "Week"}, Filling -> Axis, PlotLegends -> {"data", "model"}, ImageSize -> Medium, PlotTheme -> "Detailed"]
Out[6]=

Verwandte Beispiele

en es fr ja ko pt-br ru zh