Umgang mit Unstetigkeiten in einer kumulativen Verteilungsfunktion
Definieren Sie eine formelbasierte Verteilung durch eine kumulative Verteilungsfunktion. Die Verteilungsfunktion enthält Sprungstellen, die eine Mischung aus kontinuierlichen und diskreten Komponenten sind.
In[1]:=
cdf = CDF[
MixtureDistribution[{1/3, 2/3}, {LaplaceDistribution[0, 1],
TransformedDistribution[x - 2,
x \[Distributed] BinomialDistribution[4, 1/3]]}], z];
Den kompletten Wolfram Language-Input zeigen
Out[2]=
ProbabilityDistribution zerlegt die Verteilung in absolut kontinuierliche und diskrete Teile.
In[3]:=
ProbabilityDistribution[{CDF, cdf}, {z, -Infinity, Infinity}]
Out[3]=
Versehen Sie die WDF-Eingabe mit DiracDelta-Gewichtung.
In[4]:=
ProbabilityDistribution[
Sum[1/7 DiracDelta[x - k], {k, -3, 3}], {x, -Infinity, Infinity}]
Out[4]=