在非笛卡尔坐标系下计算面积和体积
通过围绕 轴旋转曲线
定义出的这个“坚果”很容易在柱坐标中参数化.
In[1]:=

ParametricPlot3D[
CoordinateTransform[ "Cylindrical" -> "Cartesian", {Sin[z], t, z}] //
Evaluate, {z, 0, Pi}, {t, 0, 2 Pi}, PlotTheme -> "Business"]
Out[1]=

用 Area 直接在柱坐标里求表面积.
In[2]:=

Area[{Sin[z], t, z}, {z, 0, Pi}, {t, 0, 2 Pi}, "Cylindrical"]
Out[2]=

Volume(体积)也可以在非笛卡尔坐标系里计算.
In[3]:=

Volume[{r Sin[z], t, z}, {z, 0, Pi}, {t, 0, 2 Pi}, {r, 0,
1}, "Cylindrical"]
Out[3]=

通过使用 RegionMeasure,可以在任何维数下进行这些计算.
In[4]:=

RegionMeasure[{Sin[z], t,
z}, {{z, 0, Pi}, {t, 0, 2 Pi}}, "Cylindrical"]
Out[4]=

In[5]:=

RegionMeasure[{r Sin[z], t,
z}, {{z, 0, Pi}, {t, 0, 2 Pi}, {r, 0, 1}}, "Cylindrical"]
Out[5]=
