Solve a SIAM Challenge Problem
The integral
depends on the parameter α. Find the value of
that lies between
and
and maximizes the integral. The given integral can be regarded as a Mellin convolution of two functions.
In[1]:=
f[x_] := x (2 - x)^\[Alpha] UnitBox[(x - 1)/2]In[2]:=
g[x_] := Sin[x]Compute the Mellin convolution of f[x] and g[x].
In[3]:=
(mc = MellinConvolve[f[x], g[x], x, \[Alpha]]) // TraditionalFormOut[3]//TraditionalForm=

Compare with the result given by Integrate.
In[4]:=
Integrate[(2 - x)^\[Alpha] Sin[\[Alpha]/x], {x, 0, 2},
Assumptions -> \[Alpha] > 0] // TraditionalFormOut[4]//TraditionalForm=

Plot the integral as a function of
.
In[5]:=
Plot[mc // Evaluate, {\[Alpha], 0, 4.99}, PlotStyle -> Red]Out[5]=

Compute the argument that maximizes the integral in
using FindArgMax.
In[6]:=
N[FindArgMax[mc, {\[Alpha], 1}, WorkingPrecision -> 100][[1]], 20]Out[6]=