Modélisation des réseaux sociaux
La distribution de Gompertz déplacée est la distribution du maximum de variables aléatoires indépendantes et exponentielles des valeurs extrêmes distribuées. La distribution peut être utilisée pour modéliser la croissance et le déclin de l'intérêt dans les réseaux sociaux. Le CDF de la distribution déplacée de Gompertz prend la forme suivante.
In[1]:=

CDF[ShiftedGompertzDistribution[\[Lambda], \[Xi]], x]
Out[1]=

Chiffres de la semaine de l'intérêt sur Facebook de Google Trends.
In[2]:=

ts = TemporalData[TimeSeries, {CompressedData["
1:eJyFz2tPwjAUBmDA+7wRNCpeQBTRiAGvXLoNYYytPW03QHSybiYav/tX/Ume
GRO/mPg0p+l72pykpbeP8VsmlUqlsT5xS/8n82smM/Nt9sdcYv4vC2gxoWlL
mqYto5WVVbS2tp7N5nK5jY3N7Z2tnXx+d3dvbx/XQbFwUCgUi4eHpdLRcbl8
UjmtnJ1XqxeoVqvV65dX9cvrZvP2pnHXaLUbjWaLIJMYuk4MwzTNTue+1+1a
qO9a9qA/cPq2PRg4ILnLgHPGgLkuABfSdRyHUs5AAghvyD3peb4U+IhLJoCB
NxLUk0JwgXcCRNIT2AYpPS4YByo5cGBsFL+oOFaRCqP4/VWpOFQqCKbhVEXh
9BmFKopjTFEQBs9PweRxNHkYj/yh7/ueEHI8xDGAg7AAqMsodRw3OTP2HWxK
XfyFbVl2z+p2kGn1jATRSZsQXW+RNkpSmxjkC/7xXxc=
"], {
TemporalData`DateSpecification[{2006, 8, 26, 0, 0, 0.}, {
2015, 7, 11, 0, 0, 0.}, {1, "Week"}]}, 1, {"Continuous", 1}, {
"Discrete", 1}, 1, {
ValueDimensions -> 1, DateFunction -> Automatic,
ResamplingMethod -> {"Interpolation", InterpolationOrder -> 1}}},
True, 314.1];
Montrer l'entrée complète de Wolfram Language
Out[3]=

Ajustement des données à une distribution de Gompertz déplacée tronquée.
In[4]:=

rawcounts = ts["Values"];
length = Length[rawcounts];
x = Range[length] - 0.5;
wdata = WeightedData[x, rawcounts];
In[5]:=

edist = EstimatedDistribution[wdata,
TruncatedDistribution[{0, length},
ShiftedGompertzDistribution[\[Lambda], \[Xi]]], {{\[Lambda],
1}, {\[Xi], 6}}]
Out[5]=

Comparez les prédictions du modèle aux données.
Montrer l'entrée complète de Wolfram Language
Out[6]=
