Wolfram Language

Calcul infinitésimal numérique et symbolique

Effectuez une convolution de Mellin

Effectuez une convolution de deux fonctions de Mellin en utilisant MellinConvolve.

In[1]:=
Click for copyable input
MellinConvolve[UnitBox[x - 3/2], 2 UnitBox[x - 2], x, y]
Out[1]=

Tracez le résultat avec les fonctions originales.

In[2]:=
Click for copyable input
MellinConvolve[UnitBox[x - 3/2], 2 UnitBox[x - 2], x, y]; Plot[{UnitBox[y - 3/2], 2 UnitBox[y - 2], %} // Evaluate, {y, 0, 6}, Filling -> Axis, Exclusions -> None, PlotRange -> All]
Out[2]=

Effectuez une convolution de Mellin de deux fonctions de Bessel.

In[3]:=
Click for copyable input
MellinConvolve[BesselJ[0, x], BesselJ[1, x], x, y]
Out[3]=

Tracez le résultat avec les fonctions originales.

In[4]:=
Click for copyable input
MellinConvolve[BesselJ[0, x], BesselJ[1, x], x, y]; Plot[{BesselJ[0, y], BesselJ[1, y], %} // Evaluate, {y, 0, 10}, Filling -> Axis, PlotLegends -> "Expressions"]
Out[4]=

Effectuez une convolution de Mellin multivariée.

In[5]:=
Click for copyable input
MellinConvolve[3 UnitBox[s - 3/2, t - 7/4], 2 UnitBox[s - 1, t - 1], {s, t}, {m, n}]
Out[5]=

Tracez le résultat avec les fonctions originales.

In[6]:=
Click for copyable input
MellinConvolve[3 UnitBox[s - 3/2, t - 7/4], 2 UnitBox[s - 1, t - 1], {s, t}, {m, n}]; Plot3D[{3 UnitBox[m - 3/2, n - 7/4], 2 UnitBox[m - 1, n - 1], %} // Evaluate, {m, 0, 3}, {n, 0, 3}, PlotRange -> All, Filling -> Axis, PlotPoints -> 50, Exclusions -> None, PlotStyle -> Opacity[0.4], Ticks -> None, Mesh -> None]
Out[6]=

Exemples connexes

de en es ja ko pt-br ru zh