Wolfram Language

Matrices aléatoires

Ensembles circulaires (COE, CUE...)

Les ensembles circulaires sont des familles de matrices unitaires dont les lois sont invariantes sous l'effet de différentes transformations unitaires. Les applications typiques sont la mécanique statistique, la théorie des nombres, la combinatoire et la physique nucléaire.

Les matrices d'un ensemble circulaire (CRE) sont orthogonales. »

In[1]:=
Click for copyable input
cre = RandomVariate[CircularRealMatrixDistribution[5]];
In[2]:=
Click for copyable input
OrthogonalMatrixQ[cre]
Out[2]=

Les matrices circulaires de l'ensemble unitaire (CUE) sont unitaires. »

In[3]:=
Click for copyable input
cue = RandomVariate[CircularUnitaryMatrixDistribution[5]];
In[4]:=
Click for copyable input
UnitaryMatrixQ[cue]
Out[4]=

Les matrices circulaires de l'ensemble orthogonal (COE) sont symétriques et unitaires. »

In[5]:=
Click for copyable input
coe = RandomVariate[CircularOrthogonalMatrixDistribution[5]];
In[6]:=
Click for copyable input
SymmetricMatrixQ[coe] && UnitaryMatrixQ[coe]
Out[6]=

Les matrices d'un ensemble symplectique circulaire (CSE) sont quaternioniques unitaires auto-duales. »

Afficher l'entrée complète de Wolfram Language
In[7]:=
Click for copyable input
selfdualQuaternionicQ[m_] := With[{\[ScriptCapitalJ] = KroneckerProduct[{{0, -1}, {1, 0}}, IdentityMatrix[Length[m]/2]], mat = SetAccuracy[m, 10]}, Transpose[mat].\[ScriptCapitalJ] == \[ScriptCapitalJ].mat];
In[8]:=
Click for copyable input
cse = RandomVariate[CircularSymplecticMatrixDistribution[5]];
In[9]:=
Click for copyable input
UnitaryMatrixQ[cse] && selfdualQuaternionicQ[cse]
Out[9]=

Les matrices de l'ensemble de quaternions circulaires (CQE) sont unitaires symplectiques. »

Afficher l'entrée complète de Wolfram Language
In[10]:=
Click for copyable input
symplecticMatrixQ[mat_] := With[{\[ScriptCapitalJ] = KroneckerProduct[{{0, -1}, {1, 0}}, IdentityMatrix[Length[mat]/2]] }, Conjugate[mat].\[ScriptCapitalJ] == \[ScriptCapitalJ].mat];
In[11]:=
Click for copyable input
cqe = RandomVariate[CircularQuaternionMatrixDistribution[5]];
In[12]:=
Click for copyable input
UnitaryMatrixQ[cqe] && symplecticMatrixQ[cqe]
Out[12]=

Les valeurs propres des matrices de CUE, COE et CSE ont une longueur unitaire et sont uniformément distribuées en phase.

Afficher l'entrée complète de Wolfram Language
In[13]:=
Click for copyable input
args = Flatten[ Arg[RandomVariate[ MatrixPropertyDistribution[Eigenvalues[x], x \[Distributed] #], 10^4]]] & /@ {CircularUnitaryMatrixDistribution[5], CircularOrthogonalMatrixDistribution[5], CircularSymplecticMatrixDistribution[5]}; Row[MapThread[ Histogram[#1, {-Pi, Pi, Pi/10}, Frame -> None, ChartLegends -> Placed[#2, Above]] &, {args, {Style["Unitary", 15], Style["Orthogonal", 15], Style["Symplectic", 15]}}]]
Out[13]=

Visualisez la loi conjointe de la phase des valeurs propres à deux dimensions d'une CUE et comparez-la avec la densité actuelle.

In[14]:=
Click for copyable input
evs\[ScriptCapitalD] = MatrixPropertyDistribution[Arg[Eigenvalues[x]], x \[Distributed] CircularUnitaryMatrixDistribution[2]]; \[CurlyPhi]s = RandomSample /@ RandomVariate[evs\[ScriptCapitalD], 10^5];
Afficher l'entrée complète de Wolfram Language
In[14]:=
Click for copyable input
Show[ Histogram3D[\[CurlyPhi]s, {-Pi, Pi, 0.25}, PDF, PlotTheme -> "Scientific", ChartStyle -> "AvocadoColors"], Plot3D[1/(8 Pi^2) Abs[Exp[I \[Phi]1] - Exp[I \[Phi]2]]^2, {\[Phi]1, -Pi, Pi}, {\[Phi]2, -Pi, Pi}, PlotStyle -> None, MeshStyle -> Thick], ImageSize -> Medium]
Out[15]=

Exemples connexes

de en es ja ko pt-br ru zh