Симуляция векторного авторегрессионного (AR) процесса
Используйте MatrixNormalDistribution для симуляции векторного авторегрессионного процесса.
In[1]:=
sigR = Covariance[ARProcess[{a}, 1][Range[0, 100]]];
sigC = {{s11, s12}, {s12, s22}};
In[2]:=
rules = {a -> 1/2, s11 -> 1, s12 -> 1/2, s22 -> 3};
In[3]:=
\[ScriptCapitalD] = MatrixNormalDistribution[sigR, sigC] /. rules;
Сымитируйте случайную выборку из матричного распределения.
In[4]:=
vals = RandomVariate[\[ScriptCapitalD], 10^4];
Создайте TemporalData из отобранных значений.
In[5]:=
td = TemporalData[vals, {0, Length[sigR] - 1, 1},
ValueDimensions -> 2]
Out[5]=
Протестируйте диагональный векторный авторегрессионный процесс.
In[6]:=
proc = ARProcess[{a IdentityMatrix[2]}, sigC];
In[7]:=
sol = FindProcessParameters[td, proc]
Out[7]=
Сравните с начальными значениями.
In[8]:=
sol[[All, 2]] - rules[[All, 2]]
Out[8]=