用 G 约化计算定积分
将函数表示为 MeijerG 的形式使我们能够计算其在正实数上的乘积.
创建将函数乘积的积分表示为 MeijerG 形式的规则.
In[1]:=

IntegrateMeijerG[f_ g_, {z_, 0, Infinity}] /; FreeQ[{f, g}, MeijerG] :=
IntegrateMeijerG[
MeijerGReduce[f, z] MeijerGReduce[g, z], {z, 0, Infinity}]
可以用单独的 MeijerG 表达式的形式来精确表示该积分.
In[2]:=

IntegrateMeijerG[\[Alpha]_ Inactive[MeijerG][{a_, b_}, {c_,
d_}, \[Omega]_. z_] Inactive[MeijerG][{e_, f_}, {g_,
h_}, \[Eta]_. z_], {z_, 0, Infinity}] /;
FreeQ[{\[Alpha], \[Omega], \[Eta]},
z] := \[Alpha] MeijerG[{Join[-c, e], Join[f, d]}, {Join[-a, g],
Join[h, -b]}, \[Eta]/\[Omega]]
将这个方法应用于计算 .
In[3]:=

Plot[(1 + z)^(-3/2) EllipticK[-2 z], {z, 0, 10}, Filling -> Axis,
PlotRange -> All]
Out[3]=

In[4]:=

IntegrateMeijerG[(1 + z)^(-3/2) EllipticK[-2 z], {z, 0, Infinity}]
Out[4]=

用 Integrate 得到相同的结果.
In[5]:=

Integrate[(1 + z)^(-3/2) EllipticK[-2 z], {z, 0, Infinity}]
Out[5]=

答案虽然看起来很不一样,但它们是等价的.
In[6]:=

IntegrateMeijerG[(1 + z)^(-3/2) EllipticK[-2 z], {z, 0, Infinity}];
Integrate[(1 + z)^(-3/2) EllipticK[-2 z], {z, 0, Infinity}];
FullSimplify[% == %%]
Out[6]=
