Encuentre el polígono pequeño más grande
Encuentre el polígono con área máxima entre los polígonos con lados y diámetro
.
En Mathematica 11, FindMinimum agrega un solucionador IPOPT para resolver de forma más eficiente problemas de optimización restringidos a gran escala.

Denote con n el número de vértices del polígono.

n = 50;
Deje que sean las coordenadas polares del vértice del polígono
.

vars = Join[Array[r, n], Array[\[Theta], n]];
Estos satisfacen las restricciones ,
,
,
.

varbounds =
Join[Table[0 <= r[i] <= 1, {i, n - 1}], {r[n] == 0},
Table[0 <= \[Theta][i] <= Pi, {i, n - 1}], {\[Theta][n] == Pi}];
El área del polígono es la suma de las áreas de triángulos con vértices ,
y
(el origen).

area = 1/2 Sum[
r[i] r[i + 1] Sin[\[Theta][i + 1] - \[Theta][i]], {i, 1, n - 1}];
La distancia entre cada dos vértices no debería exceder 1.

constr1 =
Flatten[Table[
0 < r[i]^2 + r[j]^2 -
2 r[i] r[j] Cos[\[Theta][i] - \[Theta][j]] <= 1, {i, 1,
n - 1}, {j, i + 1, n}], 2];
Debido al orden de vértices, las siguientes restricciones existen.

constr2 = Table[\[Theta][i] <= \[Theta][i + 1], {i, 1, n - 1}];
Seleccione puntos iniciales para las variables.

x0 = vars /. {r[i_] ->
4. i (n + 1 - i)/(n + 1)^2, \[Theta][i_] -> \[Pi] i/n};
Maximice el área sujeta a las restricciones.

sol = FindMaximum[{area, constr1, constr2, varbounds},
Thread[{vars, x0}]];
Convierta a coordenadas cartesianas.

rectpts =
Table[FromPolarCoordinates[{r[i], \[Theta][i]}], {i, 1, n}] /.
sol[[2]];
Represente gráficamente la solución.

Show[ListPlot[rectpts, PlotStyle -> {Blue, PointSize -> Medium}],
Graphics[{Opacity[.1], Blue, EdgeForm[Blue], Polygon[rectpts]}],
AspectRatio -> 1, ImageSize -> Medium]
