Вычисление точных собственных мод для уравнения теплопроводности
Зададим уравнение теплопроводности с однородными граничными условиями Дирихле.
In[1]:=

{\[ScriptCapitalL], \[ScriptCapitalB]} = {D[u[t, x], t] == 
    Laplacian[u[t, x], {x}], DirichletCondition[u[t, x] == 0, True]};Определим четыре наименьших собственных значения и собственных функции.
In[2]:=

{vals, funs} = 
 DEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]}, u[t, x], 
  t, {x, 0, \[Pi]}, 4]Out[2]=

Визуализируем собственные функции.
In[3]:=

Table[Plot3D[funs[[i]] // Evaluate, {x, -3, 3}, {t, 0, 1/3}, 
  PlotRange -> All, Ticks -> False, Mesh -> False], {i, 4}]Out[3]=

























 
  
  
  
  
  
  
 