Cree una galería de funciones propias de un laplaciano en un balón
Defina un operador laplaciano en 3D.
In[1]:=
\[ScriptCapitalL] = -Laplacian[u[x, y, z], {x, y, z}];
Especifique las condiciones de límite homogéneas de Dirichlet.
In[2]:=
\[ScriptCapitalB] = DirichletCondition[u[x, y, z] == 0, True];
Encuentre los valores propios y funciones propias más pequeños en un balón.
In[3]:=
\[CapitalOmega] = Ball[{0, 0, 0}, 2];
In[4]:=
{vals, funs} =
DEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x, y, z], {x, y, z} \[Element] \[CapitalOmega], 16];
Los valores propios son dados en términos de BesselJZero.
In[5]:=
vals[[1]] // TraditionalForm
Out[5]//TraditionalForm=
Genere una galería de las funciones propias.
muestre la entrada completa de Wolfram Language
Out[6]=