Wolfram Language

Ecuaciones diferenciales parciales

Modelo del flujo de calor en una barra con aislamiento

Modele el flujo de calor en una barra de longitud 1 que ha sido aislada en ambos extremos.

In[1]:=
Click for copyable input
heqn = D[u[x, t], t] == D[u[x, t], {x, 2}];

Especifique que no hay calor que fluya a través de los extremos de la barra.

In[2]:=
Click for copyable input
bc = {Derivative[1, 0][u][0, t] == 0, Derivative[1, 0][u][1, t] == 0};

Especifique una condición inicial.

In[3]:=
Click for copyable input
ic = u[x, 0] == 20 + 80 x;

Resuelva la ecuación de calor sujeta a estas condiciones.

In[4]:=
Click for copyable input
sol = DSolve[{heqn, bc, ic}, u[x, t], {x, t}]
Out[4]=

Extraiga unos cuantos términos de la suma de Inactive.

In[5]:=
Click for copyable input
approxsol = u[x, t] /. sol[[1]] /. {Infinity -> 4} // Activate // Expand
Out[5]=

Visualice la evolución de la temperatura en un valor estable de 60°.

In[6]:=
Click for copyable input
Plot[Table[approxsol, {t, 0.02, 0.9, 0.07}] // Evaluate, {x, 0, 1}, AxesOrigin -> {0, 0}, PlotRange -> All]
Out[6]=

Ejemplos relacionados

de en fr ja ko pt-br ru zh