Wolfram Language

Probabilité et statistiques étendues

Densité de probabilité pour les produits et les quotients de variables aléatoires

Trouvez la fonction de densité de probabilité pour le rapport entre l'échantillon le plus petit et le plus grand parmi les dessins indépendants à partir de BetaDistribution[2, 3].

In[1]:=
Click for copyable input
n = 5; pdf = PDF[ TransformedDistribution[ min/max, {min, max} \[Distributed] OrderDistribution[{BetaDistribution[2, 3], n}, {1, n}]], u]
Out[1]=

Visualisez la densité.

In[2]:=
Click for copyable input
Plot[pdf, {u, 0, 1}, PlotRange -> All, Filling -> Axis, PlotTheme -> "Detailed", ImageSize -> Medium, PlotLegends -> None]
Out[2]=

Calculez la densité de probabilité pour le produit de deux distributions triangulaires.

In[3]:=
Click for copyable input
pdf2 = PDF[ TransformedDistribution[ x1 x2, {x1 \[Distributed] TriangularDistribution[{-1, 2}, -1], x2 \[Distributed] TriangularDistribution[{-4, 3}, 2]}], u]
Out[3]=
Afficher l'entrée complète de Wolfram Language
In[4]:=
Click for copyable input
Plot[pdf2, {u, -4, 4}, Exclusions -> None, Filling -> Axis, PlotTheme -> "Detailed", ImageSize -> "Medium", PlotLegends -> None, PlotRange -> All]
Out[4]=

Trouvez la densité de probabilité pour le quotient de deux variables aléatoires normales indépendantes.

In[5]:=
Click for copyable input
pdf3 = PDF[ TransformedDistribution[ z1/z2, {z1 \[Distributed] NormalDistribution[], z2 \[Distributed] NormalDistribution[\[Mu], 1]}], x]
Out[5]=

La distribution est à queue lourde pour toute valeur fixe de .

In[6]:=
Click for copyable input
Series[Exp[\[Mu]^2/2] pdf3, {x, Infinity, 8}, Assumptions -> \[Mu] > 0] // Expand
Out[6]=
Afficher l'entrée complète de Wolfram Language
In[7]:=
Click for copyable input
Plot[Evaluate[ pdf3 /. {{\[Mu] -> 0}, {\[Mu] -> 1}, {\[Mu] -> 3}, {\[Mu] -> 5}}], {x, -2, 2}, PlotLegends -> {"\[Mu] = 0", "\[Mu] = 1", "\[Mu] = 3", "\[Mu] = 5"}, PlotRange -> All, PlotTheme -> "Detailed", ImageSize -> "Medium"]
Out[7]=

Exemples connexes

de en es ja ko pt-br ru zh