Wolfram Language

Sistemas diferenciais de valores próprios

Modele pequenas oscilações em uma molécula de CO

Experimentalmente, uma molécula de CO oscila em torno do seu comprimento de equilíbrio com uma constante efetiva de elasticidade de . As oscilações são governados pela equação de oscilador harmônico quântico. A seguir, é a massa reduzida de uma molécula, é a frequência natural, é o deslocamento da posição de equilíbrio, e é a constante de Planck reduzida.

In[1]:=
Click for copyable input
qho = -(\[HBar]^2/(2 m)) Laplacian[u[x], {x}] + (m \[Omega]^2)/ 2 x^2 u[x];

Calcule os primeiros quatro valores e funções próprios normalizados.

In[2]:=
Click for copyable input
sol = DEigensystem[qho, u[x], {x, -\[Infinity], \[Infinity]}, 4, Assumptions -> \[HBar] > 0 && m > 0 && \[Omega] > 0, Method -> "Normalize"]
Out[2]=

Supondo que a partícula está em uma superposição igual dos quatro estados, a função de onda terá a forma .

In[3]:=
Click for copyable input
\[Psi][x_, t_] = Total[MapThread[1/2 Exp[I E t #1/\[HBar]] #2 &, sol]]
Out[3]=

Calcule os três parâmetros , , e usando unidades de base de unidades de massa atômica, femtossegundos, e picometros, enquanto os valores resultantes estarão perto de unidade de ordem.

In[4]:=
Click for copyable input
m = QuantityMagnitude[( Entity["Element", "Carbon"][ EntityProperty["Element", "AtomicMass"]] Entity["Element", "Oxygen"][EntityProperty["Element", "AtomicMass"]])/( Entity["Element", "Carbon"][ EntityProperty["Element", "AtomicMass"]] + Entity["Element", "Oxygen"][ EntityProperty["Element", "AtomicMass"]]), "AtomicMassUnits"]
Out[4]=
In[5]:=
Click for copyable input
\[Omega] = Sqrt[QuantityMagnitude[Quantity[1.86, "Kilonewtons"/"Meters"], "AtomicMassUnit"/"Femtoseconds"^2]/m]
Out[5]=
In[6]:=
Click for copyable input
\[HBar] = QuantityMagnitude[Quantity[1., "ReducedPlanckConstant"], "AtomicMassUnit"*"Picometers"^2/"Femtoseconds"]
Out[6]=

A função densidade de probabilidade do deslocamento é dada por .

In[7]:=
Click for copyable input
\[Rho][x_, t_] = FullSimplify[ComplexExpand[Conjugate[\[Psi][x, t]] \[Psi][x, t]]]
Out[7]=

Como uma distribuição de probabilidade, a integral de sobre os reais é 1 para todo .

In[8]:=
Click for copyable input
Chop[Integrate[\[Rho][x, t], {x, -\[Infinity], \[Infinity]}]]
Out[8]=

Visualize a densidade de probabilidade ao longo do tempo.

mostre o input completo da Wolfram Language
In[9]:=
Click for copyable input
Animate[Plot[\[Rho][x, t], {x, -25, 25}, PlotRange -> {0, .16}, PlotTheme -> "Detailed", FrameLabel -> {Row[{x, RawBoxes@RowBox[{"(", "\"pm\"", ")"}]}, " "], None}, LabelStyle -> Larger, PlotLegends -> Placed[{Row[{HoldForm[\[Rho]][x, Quantity[NumberForm[t, {2, 1}], "Femtoseconds"]], RawBoxes@RowBox[{"(", SuperscriptBox["\"pm\"", -1], ")"}]}, " "]}, Above]], {t, 0., 5.7, ImageSize -> Small}, AnimationRate -> 1, SaveDefinitions -> True, Alignment -> Center]
Reproduzir
Parar

Exemplos Relacionados

de en es fr ja ko ru zh