Wolfram Computation Meets Knowledge

Wolfram Innovator Award

Wolfram technologies have long been a major force in many areas of industry and research. Leaders in many top organizations and institutions have played a major role in using computational intelligence and pushing the boundaries of how the Wolfram technology stack is leveraged for innovation across fields and disciplines.

We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.


Trevor Bennett

Cofounder, Starfish Space

Areas: Aerospace, Control Engineering, Risk Analysis, Software Development, Systems Engineering

Trevor Bennett is a cofounder at Starfish Space, where he’s giving life to on-orbit services. He earned a PhD from the University of Colorado, where he was a NASA Space Technology Research Fellow and one of Aviation Week’s “20 Twenties.” Prior to Starfish Space, Trevor designed and developed guidance, navigation and control (GNC) software at NASA and more recently Blue Origin. His journey with Mathematica started in 2013 when he was studying charged spacecraft formation flying. Wolfram’s software allowed development and refinement of a new set of orbit element use cases that could aid spacecraft operations. He has broad technical expertise in GNC, with a particular focus on rendezvous, proximity operations and docking (RPOD).


Robert Rasmussen and Kirk Reinholtz

Senior Engineers, Jet Propulsion Laboratory

Areas: Aerospace, Control Engineering, High-Performance and Parallel Computing, Probability Theory, Risk Analysis, Software Development, Systems Engineering

Robert Rasmussen and Kirk Reinholtz are systems engineers who have used the Wolfram Language to develop a set of methodologies for building complex control system applications. Their integrated mission operation systems utilize the Wolfram Language to provide live updates to local data stores, keeping information consistent throughout processes. Both have used Mathematica extensively for large probability and engineering computations—including hundred-day distributed computations and the processing of gigabyte-scale datasets. They evangelize Mathematica and the Wolfram Language to others in the aerospace field, encouraging them to use Wolfram Notebooks for exploration and the expression of ideas.


John Michopoulos

Naval Research Laboratory

Areas: Control, Control Engineering, Materials Science, Modeling Dynamical Systems with Mathematica, Physics, System Modeling

John Michopoulos uses Mathematica in his professional research with composite materials and has been published in the International Journal for Multiscale Computational Engineering, Composite Structures, and the Journal of Computing and Information Science in Engineering. He applies the global optimization capabilities of Mathematica to solve inverse problems and better understand the physics of materials and composite material designs.


Sam Daniel

Engineering Fellow, Raytheon

Areas: Control Engineering, Engineering, Signal Processing

Sam Daniel has been using Mathematica since 1988—the year Mathematica 1.0 was launched—to complete a range of innovative projects from patented work on fingerprint identification algorithms for Motorola to spearheading signal processing projects for Raytheon Missile Systems. His mastery of Mathematica has enabled him to document his work and share those results with others, bringing invaluable insights to areas from adaptive antenna simulation to radar ground clutter characterization. Sam’s continued work with Mathematica will include creating elaborate Enterprise CDFs from Wolfram SystemModeler for possible automatic extraction of parameters and control placement.


W. Craig Carter

Professor of Materials Science and Engineering, MIT

Areas: Computer Graphics and Visual Arts, Control Engineering, Materials Science

W. Craig Carter is recognized for his many uses of Mathematica over the years, starting with his PhD studies. He has tutored other MIT faculty with course examples in Mathematica to help their work, from the project planning stage forward. Craig has also used Mathematica for many years in his course “Mathematics for Materials Science and Engineers.” Craig’s achievements using Mathematica in his research include prototyping an idea with a start-up company to create a new type of battery. He also used Wolfram technology to collaborate on and help design an art piece feature at the Pompidou in Paris.

See W. Craig Carter's Mathematica Demonstrations »

All Recipients:

By Year:

By Area of Interest:

See More