Wolfram Computation Meets Knowledge

Wolfram Innovator Award

Wolfram technologies have long been a major force in many areas of industry and research. Leaders in many top organizations and institutions have played a major role in using computational intelligence and pushing the boundaries of how the Wolfram technology stack is leveraged for innovation across fields and disciplines.

We recognize these deserving recipients with the Wolfram Innovator Award, which is awarded at the Wolfram Technology Conferences around the world.

2021

Dr. Girish Arabale

Founding Director, Scigram Technologies Foundation

Areas: Computational Thinking, Education, Software Development

Dr. Arabale is the founding director of Scigram Technologies Foundation, a not-for-profit education organization seeking to introduce a tinkering culture into the schools to foster creativity, excitement and innovation in science learning. At Scigram, Dr. Arabale teaches underprivileged children how to program using the Raspberry Pi. He also frequently speaks to children at the K–12 level to teach coding techniques using the Wolfram Language. Currently, Dr. Arabale is developing a computational learning platform and is working on a project known as “Computable City” that aims to make every aspect of the city’s ecosystem computable.

2021

Bruno Autin

President, Les Trois Platanes

Areas: Authoring and Publishing, Computational Physics, Physics, Software Development

Bruno Autin started his professional life in the Laboratoire de Recherches Générales de la Compagnie Française Thomson Houston, where he studied the amplification of acoustic microwaves in cadmium sulfide. He strove to replace classical traveling wave tubes by tiny crystals, the scaling factor being the ratio between sound and light velocities. In 1967, he began working at the European Center for Nuclear Research (CERN), where his research turned quickly towards subnuclear physics with the development of very-high-energy accelerators. Bruno started with the first proton collider, the Intersection Storage Rings (ISR), and became introduced to the design and operation of the magnetic systems of accelerators and colliders. The basic theory had been established by Ernest Courant, but matching the architecture of colliders to particle detectors was largely a process of trial and error depending on numerical computations. Finding this to be unsatisfactory, he started testing symbolic languages. The first achievement was the shape of the CERN antiproton source calculated with Veltman’s Schoonschip. The saga of the antiprotons continued both at CERN and at Fermilab. Then, during a sabbatical year at Lawrence Berkeley National Laboratory, where he worked on the design of the Advanced Synchrotron Light Source, he tested the first release of Mathematica, which was packed with the NeXT computer. Having symbolics, numerics, graphics and the notebook interface convinced him to build two packages: Geometrica for geometry and BeamOptics for the investigation of optical systems adapted to projects such as beam emittance optimization for the Large Hadron Collider (LHC), muon colliders, neutrino factories and medical synchrotrons. Now retired from CERN, he follows the progress of particle physics and writes particle accelerator documentation for Wolfram Research.

2021

Trevor Bennett

Cofounder, Starfish Space

Areas: Aerospace, Control Engineering, Risk Analysis, Software Development, Systems Engineering

Trevor Bennett is a cofounder at Starfish Space, where he’s giving life to on-orbit services. He earned a PhD from the University of Colorado, where he was a NASA Space Technology Research Fellow and one of Aviation Week’s “20 Twenties.” Prior to Starfish Space, Trevor designed and developed guidance, navigation and control (GNC) software at NASA and more recently Blue Origin. His journey with Mathematica started in 2013 when he was studying charged spacecraft formation flying. Wolfram’s software allowed development and refinement of a new set of orbit element use cases that could aid spacecraft operations. He has broad technical expertise in GNC, with a particular focus on rendezvous, proximity operations and docking (RPOD).

2021

Bruno Buchberger

Professor Emeritus, Johannes Kepler University Linz

Areas: Education, Mathematics, Mathematics Courseware Design, Software Development

Bruno Buchburger is a professor of computer mathematics at Johannes Kepler University in Linz, Austria. He is internationally known for his algorithmic theory of Gröbner bases. In recent years, Buchberger established the automated reasoning system Theorema and implemented it with his coworkers and students within Mathematica. Buchberger also contributed to the development of symbolic computation and computer algebra by founding and building up the Journal of Symbolic Computation, the Research Institute for Symbolic Computation (RISC), the Softwarepark Hagenberg and the University of Applied Sciences Upper Austria.

2021

Richard Carbone

Digital Forensic Analyst & Researcher, Defence R&D Canada

Areas: Data Analysis, Data Science, Research and Analysis, Software Engineering

Richard Carbone is a digital forensic analyst and researcher at Defence R&D Canada, where his work involves investigations into advanced persistent threats, state actors and insider threats. He writes and designs tools using Mathematica to solve certain digital forensic problems that have not been adequately addressed by the community or by digital forensic software vendors. (The growth in Mathematica’s image processing capabilities specifically has made it a useful tool in digital forensics.) Examples of his prototyped tools include a forensic image analysis system and a binary file analysis system, the latter of which helps the user visually identify the underlying data and structure patterns inherent in most file formats. Carbone additionally has conducted research with federal law enforcement to define Canada’s standards for forensic analysis of computer memory.

2021

General Vibration Corporation

Areas: Engineering, Internet of Things, Software Development

General Vibration is a corporation that focuses on improving the foundation of haptics. The General Vibration team first developed a novel force feedback joystick, and later focused on synchronized vibration of inexpensive eccentric rotating mass vibration motors, which are commonly found in game controllers as well as mobile phones. Sony Interactive Entertainment licenses the company’s entire haptics (intellectual property) portfolio, which means that their architecture underlies technology like the Sony PS5’s Sony DualSense wireless controller, released in November 2020. General Vibration has been granted more than 20 patents in the US, Asia and Europe, with more pending.

Award accepted by Rob Morris, chief scientist and co-inventor.

2021

Bill Gosper

Mathematician and Programmer

Areas: Computer Science, Education, Software Development

Bill Gosper was part of the group at MIT that produced HAKMEM, also known as AI Memo 239, a large collection of computer and mathematical hacks, some of which are now quite famous. Stephen Wolfram refers to Bill as “Ramanujan-like” for his prolific production of mathematical results. Bill has invented several algorithms for symbolic computation, including ones for symbolic summation and continued fractions. In more recent times, Bill has been working with the next generation of amazingly bright students, producing remarkable and very surprising research results.

2021

Houston Methodist Research Institute

Areas: Biomedical Research, Biostatistics, Biotechnology, Mathematical Biology, Mathematical Modeling

Houston Methodist is a leading academic medical center that takes a multidisciplinary approach to changing the face of medicine. Doctors Cristini, Butner and Wang are a team of engineer scientists at the Houston Methodist Research Institute who use mathematical modeling to study biological problems, with a special focus on disease progression and treatment. They design and implement mathematical descriptions of the key biophysical phenomena within the tumor microenvironment. They are currently working to establish methods to use mathematical modeling to predict cancer-patient response to immune checkpoint inhibitor immunotherapy. Mathematica has played a key role in this process, allowing them to rapidly implement and update model versions, perform testing and optimization, and conduct extensive analysis on large sets of patient data.

Award accepted by Dr. Joseph D. Butner, faculty fellow, Mathematics in Medicine program; Dr. Vittorio Cristini, professor and director, Mathematics in Medicine program; and Dr. Zhihui Wang, research scientist and associate professor, Mathematics in Medicine program.

2021

Ming Hsu

William Halford Jr. Family Associate Professor, Haas School of Business and Helen Wills Neuroscience Institute, University of California, Berkeley

Areas: Biomedical Research, Complexity Science, Economic Research and Analysis, Economics, Software Development

Ming Hsu is an economist and neuroscientist who studies how people make decisions, in terms of both the hardware (i.e. the neural systems that make decision making possible) and software (i.e. the computations that these neural systems perform). He has used Mathematica extensively since his doctoral work at Caltech, studying the formation and evolution of prices in experimental double auction markets. Subsequent work focused on developing new computational models of choice behavior in decisions under uncertainty and relating these models to behavioral and neural data. In the future, he hopes to utilize the text-analytic capabilities of Mathematica to broaden the range of cognitive functions captured in current models of decision making.

2021

Dr. Carol Johnstone

Senior Scientist, Particle Accelerator Corporation

Areas: Applied Mathematics, Biomedical Research, Computational Physics, Computer Science, Data Science, Mathematical Biology, Optimization, Physics

Dr. Johnstone is an internationally recognized senior accelerator physicist at Fermilab and Particle Accelerator Corporation. Her work was initially created to solve a simple set of approximate, thin lens optics equations simultaneously with geometric orbit equations. These constraint equations provided physical and field parameters that insured stable machine performance in novel accelerators for high energy physics research, such as the muon collider or Neutrino Factory. Her work evolved into a powerful new methodology for advanced accelerator design and optimization, which has since been applied to innovations in accelerators for radioisotope production, cancer therapy, security and cargo scanning, radiopharmaceuticals and green energy production. Dr. Johnstone’s efforts have resulted in the creation of a now-patented design for a non-scaling fixed-field gradient accelerator. Her work has also helped lead to the now-under-construction National Center for Particle Beam Therapy and Research in Texas, which will be the most advanced cancer therapy center in the US.

2021

Jang-Hoon Lee

Professor of Mathematics, Paju Girls' High School

Areas: Authoring and Publishing, Computational Thinking, Education, Mathematics

Jang-Hoon Lee is a professor of mathematics at Paju Girls’ High School and the most famous Mathematica user in South Korea. He has introduced Wolfram’s software to millions of users and extensively incorporated it to his teaching. This includes developing an online Mathematica textbook for his students, called Mathematica LAB. He also opened the Mathought.com website and creates math content using Mathematica for Naver.com, where he has 20 thousand subscribers and 6.5 million cumulative views. Due to this and other initiatives, he has won the Korea Mathematics Education Award from the Ministry of Education of South Korea and the Science Teacher of the Year Award from the Ministry of Science and Technology Information and Communication of South Korea.

2021

Scot Martin

Gordon McKay Professor of Environmental Engineering, School of Engineering and Applied Sciences, Harvard University

Areas: Authoring and Publishing, Data Analysis, Data Science, Engineering, Environmental Engineering, Physics

Scot Martin is currently a Gordon McKay Professor of Environmental Engineering and has previously held positions as an assistant professor at the University of North Carolina at Chapel Hill and a NOAA Postdoctoral Fellow in Climate and Global Change at MIT. His research focuses on engineering solutions to the major environmental challenges presently facing the world. Scot’s laboratory works specifically on problems of air and water pollution and their effects on climate change. His current research has a focus on connections among plant emissions of volatile organic compounds, particle-phase secondary organic material and climate. Martin is currently working to complete a book on aerosol science and technology and is developing a HarvardX course on thermodynamics.

2021

David J. M. Park Jr.

Developer

Areas: Authoring in Mathematica, Calculus, Software Development

David J. M. Park Jr. develops applications in the Wolfram Language. In the past he worked on technical computer programming and the engineering of cesium beam tubes used in atomic clocks in satellites. He has used Mathematica since Version 2 and developed and sold packages such as Tensorial for tensorial calculus and presentation software for producing custom graphics and presentations for earlier versions of Mathematica. He currently is coauthoring a Grassman calculus application, which is in beta-testing development.

2021

Edmund Robinson

Director of Data Analytics, Afiniti

Areas: Actuarial Sciences, Data Analysis, Data Analytics, Data Science, Industrial Mathematics, Risk Analysis, Risk Management, Software Development

Edmund Robinson is an industrial mathematician and software developer who has made many noteworthy contributions in the fields of fund and risk management as well as reinsurance. His prominent work includes the creation of interactive visualizations to provide breakdowns and comparisons of funds on the fly; generation of highly formatted performance figures with financial measures and statistics; summary infographics and PDF export; and rapid modeling, simulation and analysis of bespoke contract structures with interactive data, model and parameter selection. Edmund has also given talks focusing on workflows that combine third-party geographic information system (GIS) datasets with the contract loss distributions to produce a dynamic tool to estimate and visualize incurred but not reported (IBNR) claims related to a windstorm event and historical analysis of sunny-day flooding occurrences and forecasting with time series analysis.

2021

Leonardo Roncetti

Project Director for Offshore Structures and Maritime Works, TechCon Engineering and Consulting

Areas: Data Analysis, Engineering, Risk Management, Software Development, Structural Engineering

Leonardo Roncetti created data analysis and decision-making process for critical lifting operations of personnel on offshore platforms by crane to increase the safety of this extremely dangerous field. He is also known for creating a methodology that utilizes artificial intelligence to monitor cracks in concrete or steel structures in real time to prevent collapse and study damage over time. This methodology can be used in structures such as dams, bridges, nuclear power plants, buildings, hazardous-content storage tanks and many other large structures. He is an often-sought-after expert regarding structural failures and accidents of many types and has appeared and/or been interviewed about such across many media outlets.

2021

Fernando Sandoya

Principal Professor, Escuela Superior Politécnica del Litoral

Areas: Business Analysis, Data Science, Education, Machine Learning, Software Development

Fernando Sandoya currently teaches at the post-graduate level and oversees research and development of new products in context of consulting business. Among his notable projects are the development and implementation of an intelligent assistant for optimal sequencing of production in the largest food manufacturer in Ecuador (PRONACA); the development and implementation of a system for optimization of the reverse logistics of used tires across Ecuador (SEGINUS); the development of descriptive and predictive analytical model for land transportation of containers to the Ports of Guayaquil (Spurrier Group); and professional training programs in business intelligence, data science, machine learning and models for Ecuadorian universities. Dr. Sandoya is currently working to develop a machine learning system for Redclic and holds development contracts with an additional dozen companies.

2021

Enrique Vílchez Quesada

Professor, Computer Science School of the National University of Costa Rica

Areas: Courseware Development, Education, Mathematics, Programming

Enrique Vílchez Quesada teaches courses in mathematics, operations research and programming fundamentals. His research is primarily associated with different activities and projects related to the development of computerized educational software and materials. He has served as coordinator of the systems engineering area and deputy director of the Computer Science School of the National University of Costa Rica. Enrique has received several distinctions in Costa Rica for his outstanding performance and professional career in teaching and research. He is an associate member of the Latin American Committee for Educational Mathematics (CLAME) and the author of more than 50 scientific and dissemination articles in the areas of mathematics and educational informatics.

2021

Virginia Tech Math Emporium

Areas: Authoring and Publishing, Courseware Development, Education, Mathematics, Software Development

Virginia Tech’s Math Emporium was established over 20 years ago. Over the years, nearly eight thousand students have been served through the Math Emporium each semester, in courses ranging from precalculus to geometry and mathematics of design. Many peer institutions have adopted the emporium model, which uses computer-based resources and emphasizes active learning and retention. Mathematica has served as the foundation for Virginia Tech’s Math Emporium. Quiz questions are created as modules, allowing for thousands of variations for a single “question.” An in-house package has been built and expanded over the years, housing thousands of functions, from formatting to building XML files, for use in the Math Emporium testing system. Additionally, Mathematica has been used to create portions of the Math Emporium’s online textbooks and to conduct assessments for the department of mathematics.

Award accepted by Jessica Schmale, senior mathematics instructor.

2021

James C. Wyant

Professor Emeritus of Optical Sciences and Computer Engineering, University of Arizona

Areas: Biomedical Research, Education, Physics, Software Engineering

James C. Wyant was the founding dean of the College of Optical Sciences. He was also the founder of the WYKO Corporation. His company is known for having manufactured and sold phase-shifting interferometers for testing optics that later were used for measuring the shape of the recording heads used in computer hard-disk drives. At one point, every major manufacturer of hard-disk drives globally purchased WYKO instruments to test the recording heads of their drives. He founded another company in 2002 known as 4D Technology. There, he developed single-shot phase-shifting interferometers that, unlike other interferometers, give accurate results in the presence of vibration and air turbulence, thus making them very useful in manufacturing environments.

2020

Dr. Kenneth Bogen

Areas: Biomedical Research, Chemical Engineering, Environmental Engineering, Molecular Biology, Risk Analysis

Kenneth T. Bogen, DrPH, DABT, is a nationally recognized, board-certified consulting toxicologist and former University of California environmental scientist who has done extensive work in environmental health risk assessment, with over one hundred published (including award-winning) scientific journal publications in the field. Since 1988, he has developed RiskQ, a comprehensive package for efficient, symbolic, documented statistical and data analysis in the Wolfram Language. Dr. Bogen has used RiskQ and Mathematica in a broad range of research and applied assessment topics including zinc-ion diffusion and cytotoxicity in the nasal cavity, nickel biokinetic modeling, multi-route exposure assessment, biologically based and mode-of-action-informed cancer risk modeling, physiologically based organophosphate pharmacokinetic/pharmacodynamic modeling, and applications of environmental, occupational and consumer product-related toxicology and epidemiology.

2020

Tomás de Camino-Beck

LEAD University

Areas: 3D Printing, Biomedical Research, Complex Systems, Computer Graphics and Visual Arts, Image and Signal Processing, Internet of Things, Software Development

Tomás de Camino-Beck is a professor, researcher, entrepreneur and music producer who has contributed to the fields of mathematical biology, satellite imaging, cellular automata and epidemiological modeling, among others. He has used Mathematica for teaching a range of mathematical subjects and hands-on maker activities like 3D printing and microcontroller programming, as well as for projects in generative design and music video creation. Most recently, he has helped develop several educational videos and a Wolfram Language–powered website for demonstrating agent-based COVID-19 models in conjunction with the Costa Rican news agency El Financiero.

2020

Pedro Paulo Balbi de Oliveira

Universidade Presbiteriana Mackenzie

Areas: Complex Systems, Computer Science, Education, Electrical Engineering, Software Development

Pedro Paulo Balbi de Oliveira is a professor at Brazil’s Mackenzie Presbyterian University who has made extensive use of Mathematica in his research on cellular automata and evolutionary computation. This has led to the continuous development of a cellular automata toolbox, which spun off a cellular multi-agent research system and a package to represent families of cellular automata. As a whole, these efforts have provided the core computational basis for the publication of over 80 research papers and for about 50 postgraduate and undergraduate student degrees.

2020

Guy F. de Téramond Peralta

Universidad de Costa Rica

Areas: Computational Physics, Education, Physics

Guy F. de Téramond Peralta is a theoretical physicist focusing on hadron structure, nuclear forces and group structure of grand unified theories. He uses Mathematica throughout his research, including ongoing contributions to light-front holographic QCD, a novel approach to hadron structure and dynamics. Guy’s work spans several decades and is widely cited in the physics community; he currently serves as a professor of physics at the University of Costa Rica.

2020

Branden Fitelson

Northeastern University

Areas: Computational Humanities, Education, Philosophy, Probability Theory, Software Development

Branden Fitelson is a distinguished professor of philosophy at Northeastern University, where he teaches logic and formal epistemology courses using Mathematica. He developed the PrSAT package (a user-friendly decision procedure for probability calculus), which is used by various researchers and teachers around the world. Branden has used Mathematica for computational research in philosophy since the early 1990s, and he consistently encourages and inspires others to do the same.

2020

Virgilio Gomez Jr.

Quality Aspirators

Areas: Biomedical Research, Image Processing, Mechanical Engineering

Virgilio Gomez Jr. is a mechanical engineer who frequently uses Mathematica for research and development. As a graduate student, he used Mathematica to implement closed-form solutions for three-dimensional vibrations of elastic bodies. In his time as a research development mechanical engineer at Quality Aspirators, he has used Wolfram Language image processing in several projects, most recently for quantifying the aerosol spray generated during a certain dental procedure. This work aided in the design and testing of Safety Suction, a device for removing blood- and bacteria-carrying particles from the air to create a more hygienic environment, helping reduce the spread of COVID-19.

1 2 3 5

All Recipients:

By Year:

By Area of Interest:

See More