Eine Eigenfunktionen-Galerie für den Laplace-Operator in einer Kugel erzeugen
Definieren Sie einen 3D-Laplace-Operator.
In[1]:=

\[ScriptCapitalL] = -Laplacian[u[x, y, z], {x, y, z}];
Spezifizieren Sie homogene Dirichlet-Randbedingungen.
In[2]:=

\[ScriptCapitalB] = DirichletCondition[u[x, y, z] == 0, True];
Ermitteln Sie die 16 kleinsten Eigenwerte und Eigenfunktionen in einer Kugel.
In[3]:=

\[CapitalOmega] = Ball[{0, 0, 0}, 2];
In[4]:=

{vals, funs} =
DEigensystem[{\[ScriptCapitalL], \[ScriptCapitalB]},
u[x, y, z], {x, y, z} \[Element] \[CapitalOmega], 16];
Die eigenwerte sind in den Termen der BesselJZero gegeben.
In[5]:=

vals[[1]] // TraditionalForm
Out[5]//TraditionalForm=

Generieren Sie eine Galerie der EIgenfunktionen.
Den kompletten Wolfram Language-Input zeigen
Out[6]=
